Acoustical Tests

- University of Illinois Recreation Center
- Boston University Arena Mechanical Room
- RM & I Marine Barracks Music Rooms
- Florida State University Communications Studios
- Cincinnati State Audio Studio and Control Room
- CNN Studios
- WWF Entertainment Studios
- ESPN Studios
- University of Akron Student Union Ballroom
- Nasshe Basketball Hall of Fame Office and Production Room
- Hidding College Gun Range
- Ramsey County Law Center Gun Range
- National Underground Railroad Freedom Center Mechanical Rooms
- Soldier Field-Chicago Bears Stadium Renovation
- Elder Shirt Condominiums

Noteworthy Projects

Thousands of KINETICS® RIM systems have been installed successfully under mechanical equipment rooms, gymnasium floors, rooftops, Aero and fitness centers, theater and cinema venues, recording and broadcasting studio private residences, loading docks, gun ranges, and bowling centers around the world. Below, we’ve listed just a few of our noteworthy projects.

- Gene Siskel Film Center Theater
- Navy Pier USO Lounge
- Lucky Strike Lanes at Gallery Place
- First Baptist Church of West Palm Beach gardenium and Fellowship Hall
- LA Fitness Centers
- Georgia International Convention Center Rooftop
- AMC Easton 30 at Eastown Town Center
- Montero Center Your 20 Multiplex Theater
- LSU Music and Arts Building Persussion Studios
- Peabody Institute Rehearsal Hall and Persussion Room Renovation
- Bryph College Preparatory Gymnasium
- University of the Cuyahoga Tailing Rooms
- O/Z Professional Medical Building Mechanical Room
- Casa Tech High School Mechanical Equipment Rooftop
- Brown Camp Loft Condominiums

Call us to discuss your requirements for noise control, and learn how to employ the versatile, proven RIM System to solve your noise problems.

KINETICS® RIM Roll-Out Floor Isolation System

Essentials

- Proven effectiveness over the lifetime of an installation: no installation time, impact noise, airborne sound transmissions.
- Consistent System natural frequency.
- Possible capacity after design for any load from light wood floors to heavy mechanical equipment rooms.
- When used in conjunction with casting and cooling, separation products, RIM is an essential component of "room-within-a-room" sound isolation construction.

Application

Kinetics Noise Control’s premier rollout system easily creates an airspace of 1 to 4 inches and incorporates a high-performance resilient decoupler. The isolation material with KIP isolators selected and spaced according to design criteria offers major advantages over other systems. Installation labor is substantially reduced, and it is easier to roll out batting with pre-spaced isolators versus measuring for and placing individual isolation mounts. This feature also ensures that the system will reach the high levels of expected performance. This system is designed to meet requirements for load capacity, natural frequency/pad deflection, and acoustical performance.

Floor Isolation Theory

Floor isolation systems are incorporated into building structures to reduce impact noise and airborne sound transmissions. A "floored" floor (or rooftop) is supported by resilient mounts installed on the structural floor or rooftop. The design of an effective isolation system is dependent on several factors including:

1. Stiffness and mass of the structural floor.
2. Isolation mount natural frequency and damping characteristics.
3. Airspace height and venting.
4. Isolation and composition of the floated floor.
5. Sound absorption in the airspace.

Floor Isolation System

- Materials and isolators effectively control noise transmission.
- Maximum effectiveness of floating floor composite construction is achieved when the finished floor is fully isolated from the building structure and non-structural components, such as ductwork and piping. Accordingly, airborne and impact noise transmissions are greatly reduced between the room incorporating the floating floor system and other parts of the building. Additionally, floating floor systems are often used to prevent transmission of vibration and airborne noise from entering into the space in which the floating floor is installed.
RIM for Concrete Floated Floors

Successfully installed for years under concrete floors found in mechanical rooms, studios, ballrooms, fitness centers, and theaters, Kinetics Noise Control’s RIM System remains the leading formwork technique for isolating concrete slabs in any floor or roof system requiring sound abatement. An original, RIM System consistency provides continuing, high-performing noise control for critical applications. Our pour-in-place floor isolation system incorporates all critical components needed in a top-performing noise control system including: KIP isolators fixed in fiberglass batting, PPI Perimeter and Penetration Interface, spray adhesive, plywood junction plates, polyethylene sheeting and tape, and resilient, non-hardening perimeter sealant. KIP isolators spaced 12”, 16”, or 24-inches on center are available in different densities allowing for a multitude of load ranges under a single slab while maintaining a constant natural frequency. Factory-trained sales representatives can help designers determine which system to use based on dead and live load requirements. Kinetics Engineering Group will provide design submittals. The fiberglass batting with KIP isolators prepacked is rolled-up and delivered in poly bags along with the specified accessories to the jobsite.

Benefits
• Greater load capacity at a lower cost
• Can be designed for any load range
• Easy to create 1”, 2”, 3”, and 4” airspaces
• Fast, simple, inexpensive installation
• Factory installation and supervision included
• RIM System successfully installed for over 45 years
• Natural Frequency constant over a wide load range

Installation Sequence
Installation of RIM is quick and easy. Decouple the area being treated by installing Perimeter and Penetration Interface (PPI) around the perimeter of the room. Additionally, PPI is used as a means of break against any other non-isolated elements such as curbs, drains, ductwork, adjacent floors, pipe, and walls. The fiberglass batting with pre-secured isolation pads is rolled out into place. If heavy point loads exist, individual KIP pads are then placed per submittal drawings. Typically, two layers of 3/4” plywood are laid (seams staggered) over the isolation pads, and the finished floor is installed with a level subfloor, a 3/8” thick strip of SRP (perimeter isolation board) is adhered to all non-isolated walls (the "dummy" side facing against all non-isolated walls). Starting from the perimeter outward, laying the floor is dictated by the height of the finished floor. The rolls of batting with secured pads are rolled out and covered by a top layer of KIP isolators spaced at similar to that of the isolated concrete slab. Starting from the perimeter outward, laying the floor is dictated by the height of the finished floor, a 3/8" thick strip of SRP (perimeter isolation board) is adhered to all non-isolated walls (the "dummy" side facing against all non-isolated walls). Starting from the perimeter outward, laying the floor is dictated by the height of the finished floor, a 3/8" thick strip of SRP (perimeter isolation board) is adhered to all non-isolated walls (the "dummy" side facing against all non-isolated walls). Starting from the perimeter outward, laying the floor is dictated by the height of the finished floor. A RIM System can be applied to fit any load condition. In the cases of free weight drops like those seen in fitness centers, please consider that lightweight composite floors can prove insufficient standing up to shock loads. Damage to the lightweight floor and isolators can occur depending on the impact/shock loads. Contact Kinetics for guidance when designing these projects.

RIM for Wood Floated Floors

RIM System wood floated floors are ideally suited for dance studios, lift style condominiums, recording studios, and other applications where high performance noise control is required in conjunction with the lower profile, light weight assembly. A RIM System floated wood floor surpasses performance of continuous underlayments due to the airspace and lower natural frequency created by the KIP pads spaced at 12", 16", or 24-inches on center. RIM System can be supplied to fit any load condition. In the cases of free weight drops like those seen in fitness centers, please consider that lightweight composite floors can prove insufficient standing up to shock loads. Damage to the lightweight floor and isolators can occur depending on the impact/shock loads. Contact Kinetics for guidance when designing these projects.

Benefits
• Can be designed for any load range
• Easy to create 1”, 2”, 3”, and 4” airspaces
• Fast, simple, inexpensive installation
• Optional channels or nailing can be used for stiffness and increased airspace

Installation Sequence
Installation of RIM System for a wood floated floor is similar to that of the isolated concrete slab. Starting from a level subfloor, a 3” thick strip of SRP (perimeter isolation board) is adhered to all non-isolated walls (the height of SRP is dictated by the height of the finished floor). The rolls of batting with secured pads are rolled out and covered by a top layer of KIP isolators spaced at similar to that of the isolated concrete slab. Starting from the perimeter outward, laying the floor is dictated by the height of the finished floor. A RIM System can be applied to fit any load condition. In the cases of free weight drops like those seen in fitness centers, please consider that lightweight composite floors can prove insufficient standing up to shock loads. Damage to the lightweight floor and isolators can occur depending on the impact/shock loads. Contact Kinetics for guidance when designing these projects.

Optional channels or nailing can be used for stiffness and increased airspace.
RIM for Concrete Floated Floors

Successfully installed for years under concrete floors found in mechanical rooms, studios, ballrooms, fitness centers, and theaters. Kinetics Noise Control’s RIM System remains the leading formwork technique for isolating concrete slabs in any floor or roof system requiring sound abatement. An original, RIM System consistently provides continuous, high-performing noise control for critical applications. Our pour-in-place floor isolation system incorporates all critical components needed in a top-performing noise control system including: KIP isolators spaced in fiberglass batting, PPI Perimeter and Penetration Interface spray, faxy adhesive, plywood joint plates, polyethylene sheeting and tape, and resilient, non-hardening perimeter sealant. KIP isolators spaced 12-, 16-, or 24-inches on center are available in different densities allowing for a multitude of load ranges under a single slab while maintaining a constant natural frequency. Factory-trained sales representatives can help designers determine which system to use based on dead and live load requirements. Kinetics Engineering Group will provide design submissions. The fiberglass batting with KIP isolators preprepared is rolled-up and delivered in poly bags along with the specified accessories to the jobsite.

Installation Sequence

Installation of RIM is quick and easy. Decouple the area being treated by installing Perimeter and Penetration Interface (PPI) around the perimeter of the room. Additionally, PPI is used as a resilient break against any other non-isolated elements such as curbs, drains, ductwork, adjacent floors, pipe, and walls. The fiberglass batt with pre-spaced isolation pads is then rolled out into place. If heavy point loads exist, individual KIP pads are then placed per submittal drawings. Typically, two layers of 3/4” plywood are laid (seams staggered) and noise control. The installation is completed by applying acoustical caulking to the top of the isolation board) is adhered to all non-isolated walls (the perimeter isolation system incorporates all critical components needed in a top-performing noise control system including: KIP isolators spaced in fiberglass batting, PPI Perimeter and Penetration Interface spray, faxy adhesive, plywood joint plates, polyethylene sheeting and tape, and resilient, non-hardening perimeter sealant. KIP isolators spaced 12-, 16-, or 24-inches on center are available in different densities allowing for a multitude of load ranges under a single slab while maintaining a constant natural frequency. Factory-trained sales representatives can help designers determine which system to use based on dead and live load requirements. Kinetics Engineering Group will provide design submissions. The fiberglass batting with KIP isolators preprepared is rolled-up and delivered in poly bags along with the specified accessories to the jobsite.

Benefits

- Greater load capacity at a lower cost
- Can be designed for any load range
- Easy to create 1”, 2”, 3”, and 4” airspaces
- Fast, simple, inexpensive installation
- Factory installation and supervision available
- RIM System successfully installed for over 45 years
- Natural Frequency constant over a wide load range

RIM for Wood Floated Floors

RIM System wood floated floors are ideally suited for dance studios, loft-style condominiums, recording studios, and other applications where high performance noise control is required in conjunction with the lower profile, tight weight assembly. A RIM System floated wood floor surpasses performance of common underlayments due to the airspace and lower natural frequency created by the KIP pads spaced at 12-, 16-, or 24-inches on center. RIM System can be supplied to fit any load condition. In the cases of free weight drops like those seen in many fitness centers, please consider that lightweight composite floors can prove insufficient starting up to shock loads. Damage to the lightweight floor and isolators can occur depending on the impact/shock loads. Contact Kinetics for guidance when designing these projects.

Installation Sequence

Installation of RIM System for a wood floated floor is similar to that of the isolated concrete slab. Starting with a level subfloor, a 3/8” thick strip of SRP (perimeter isolation board) is adhered to all non-isolated walls (the height of SRP is dictated by the height of the finished floor). The rolls of batting with secured pads are rolled out into place. If heavy point loads exist, individual KIP pads are then placed per submittal drawings. Typically, two layers of 3/4” plywood are laid (seams staggered) over the isolation pads, and the finished floor is installed according to the manufacturer’s instructions. While two layers of 3/4” plywood often provides suitable for most isolated concrete slabs, composite, resonant isolation pads are then placed per submittal drawings. Typically, two layers of plywood, glued and screwed together for added stiffness and mass, which aid in load distribution and noise control. The installation is completed by applying acoustical caulking to the top of the SRP board.

Benefits

- Can be designed for any load range
- Easy to create 1”, 2”, 3”, and 4” airspaces
- Fast, simple, inexpensive installation
- Optional channels on subfloor can be used for stiffness and increased airspace

Installation Sequence

Installation of RIM System for a wood floated floor is similar to that of the isolated concrete slab. Starting with a level subfloor, a 3/8” thick strip of SRP (perimeter isolation board) is adhered to all non-isolated walls (the height of SRP is dictated by the height of the finished floor). The rolls of batting with secured pads are rolled out into place. If heavy point loads exist, individual KIP pads are then placed per submittal drawings. Typically, two layers of 3/4” plywood are laid (seams staggered) over the isolation pads, and the finished floor is installed according to the manufacturer’s instructions. While two layers of 3/4” plywood often proves suitable for most isolated concrete slabs, composite, resonant isolation pads are then placed per submittal drawings. Typically, two layers of plywood, glued and screwed together for added stiffness and mass, which aid in load distribution and noise control. The installation is completed by applying acoustical caulking to the top of the SRP board.

Benefits

- Can be designed for any load range
- Easy to create 1”, 2”, 3”, and 4” airspaces
- Fast, simple, inexpensive installation
- Optional channels on subfloor can be used for stiffness and increased airspace

Installation Sequence

Installation of RIM System for a wood floated floor is similar to that of the isolated concrete slab. Starting with a level subfloor, a 3/8” thick strip of SRP (perimeter isolation board) is adhered to all non-isolated walls (the height of SRP is dictated by the height of the finished floor). The rolls of batting with secured pads are rolled out into place. If heavy point loads exist, individual KIP pads are then placed per submittal drawings. Typically, two layers of 3/4” plywood are laid (seams staggered) over the isolation pads, and the finished floor is installed according to the manufacturer’s instructions. While two layers of 3/4” plywood often proves suitable for most isolated concrete slabs, composite, resonant isolation pads are then placed per submittal drawings. Typically, two layers of plywood, glued and screwed together for added stiffness and mass, which aid in load distribution and noise control. The installation is completed by applying acoustical caulking to the top of the SRP board.

Benefits

- Can be designed for any load range
- Easy to create 1”, 2”, 3”, and 4” airspaces
- Fast, simple, inexpensive installation
- Optional channels on subfloor can be used for stiffness and increased airspace

Installation Sequence

Installation of RIM System for a wood floated floor is similar to that of the isolated concrete slab. Starting with a level subfloor, a 3/8” thick strip of SRP (perimeter isolation board) is adhered to all non-isolated walls (the height of SRP is dictated by the height of the finished floor). The rolls of batting with secured pads are rolled out into place. If heavy point loads exist, individual KIP pads are then placed per submittal drawings. Typically, two layers of 3/4” plywood are laid (seams staggered) over the isolation pads, and the finished floor is installed according to the manufacturer’s instructions. While two layers of 3/4” plywood often proves suitable for most isolated concrete slabs, composite, resonant isolation pads are then placed per submittal drawings. Typically, two layers of plywood, glued and screwed together for added stiffness and mass, which aid in load distribution and noise control. The installation is completed by applying acoustical caulking to the top of the SRP board.

Benefits

- Can be designed for any load range
- Easy to create 1”, 2”, 3”, and 4” airspaces
- Fast, simple, inexpensive installation
- Optional channels on subfloor can be used for stiffness and increased airspace

Installation Sequence

Installation of RIM System for a wood floated floor is similar to that of the isolated concrete slab. Starting with a level subfloor, a 3/8” thick strip of SRP (perimeter isolation board) is adhered to all non-isolated walls (the height of SRP is dictated by the height of the finished floor). The rolls of batting with secured pads are rolled out into place. If heavy point loads exist, individual KIP pads are then placed per submittal drawings. Typically, two layers of 3/4” plywood are laid (seams staggered) over the isolation pads, and the finished floor is installed according to the manufacturer’s instructions. While two layers of 3/4” plywood often proves suitable for most isolated concrete slabs, composite, resonant isolation pads are then placed per submittal drawings. Typically, two layers of plywood, glued and screwed together for added stiffness and mass, which aid in load distribution and noise control. The installation is completed by applying acoustical caulking to the top of the SRP board.

Benefits

- Can be designed for any load range
- Easy to create 1”, 2”, 3”, and 4” airspaces
- Fast, simple, inexpensive installation
- Optional channels on subfloor can be used for stiffness and increased airspace

Installation Sequence

Installation of RIM System for a wood floated floor is similar to that of the isolated concrete slab. Starting with a level subfloor, a 3/8” thick strip of SRP (perimeter isolation board) is adhered to all non-isolated walls (the height of SRP is dictated by the height of the finished floor). The rolls of batting with secured pads are rolled out into place. If heavy point loads exist, individual KIP pads are then placed per submittal drawings. Typically, two layers of 3/4” plywood are laid (seams staggered) over the isolation pads, and the finished floor is installed according to the manufacturer’s instructions. While two layers of 3/4” plywood often proves suitable for most isolated concrete slabs, composite, resonant isolation pads are then placed per submittal drawings. Typically, two layers of plywood, glued and screwed together for added stiffness and mass, which aid in load distribution and noise control. The installation is completed by applying acoustical caulking to the top of the SRP board.

Benefits

- Can be designed for any load range
- Easy to create 1”, 2”, 3”, and 4” airspaces
- Fast, simple, inexpensive installation
- Optional channels on subfloor can be used for stiffness and increased airspace
RIM for Concrete Floated Floors

Successfully installed for years under concrete floors found in commercial interiors, studios, ballrooms, fitness centers, and theaters, Kinetics Noise Control’s RIM System remains the leading formwork technique for isolating concrete slabs in any floor or roof system requiring sound abatement. An original, RIM System consistently provides continuous, high-performing noise control for critical applications. Our pour-in-place floor isolation system incorporates all critical components needed to meet the specified accessories to the jobsite.

Installation Sequence

1) Place Perimeter Board (PPI)

2) Roll-out RIM

3) Secure junction plates on plywood

4) Cover with poly layer. Ready to install

Benefits

• Greater load capacity at a lower cost
• Can be designed for any load range
• Easy to create 1”, 2”, 3”, and 4” airspaces
• Fast, simple, inexpensive installation
• Factory installation and supervision available
• RIM System successfully installed for over 45 years
• Natural Frequency constant over a wide load range

RIM for Wood Floated Floors

RIM System wood floated floors are ideally suited for dance studios, live-style concert halls, recording studios, and other applications where high performance noise control is required in conjunction with the lower profile, light weight assembly. A RIM System wood floated floor surpasses performance of comparable underlayments due to the airspace and lower natural frequency created by the KIP pads spaced at 12”, 16”, or 24” on center. RIM System can be supplied to fill any load condition. In the cases of free weight drops like those seen in fitness centers, please consider that lightweight composite floors can prove insufficient standing up to shock loads. Damage to the lightweight floor and isolators can occur depending on the impact/shock loads. Contact Kinetics for guidance when designing these projects.

Installation Sequence

1) Place Perimeter Board (SRP)

2) Roll-out RIM

3) Build-up isolated subfloor

4) Apply finish floor per manufacturer instructions

Benefits

• Can be designed for any load range
• Easy to create 1”, 2”, 3”, and 4” airspaces
• Fast, simple, inexpensive installation
• Optional chamfered edges can be used for stiffness and increased airspace

Installation of RIM System for a wood floated floor is similar to that of the isolated concrete slab. Starting with a level subfloor, a 3/8” thick strip of SRP (perimeter isolation board) is adhered to all non-isolated walls (the height of SRP is dictated by the height of the finished floor). The rolls of batting with secured pads are rolled out into place. If heavy point loads exist, individual KIP pads are then placed per submittal drawings. Typically, two layers of 3/4” plywood are laid (seams staggered) over the isolation pads, and the finished floor is installed according to the manufacturer’s instructions. While two layers of 3/4” plywood often proves suitable for most isolated concrete floor components, remember to consider three layers of plywood, glued and screwed together for added stiffness and may, which add in load capacity and noise control. The installation is completed by applying acoustic caulking to the top of the SRP board.

Installation of RIM System for concrete floated floors is ideal for dance studios, lift-style concert halls, recording studios, and other applications where high performance noise control is required in conjunction with the lower profile, light weight assembly. A RIM System floated floor surpasses performance of comparable underlayments due to the airspace and lower natural frequency created by the KIP pads spaced at 12”, 16”, or 24” on center. RIM System can be supplied to fill any load condition. In the cases of free weight drops like those seen in fitness centers, please consider that lightweight composite floors can prove insufficient standing up to shock loads. Damage to the lightweight floor and isolators can occur depending on the impact/shock loads. Contact Kinetics for guidance when designing these projects.

Benefits

• Greater load capacity at a lower cost
• Can be designed for any load range
• Easy to create 1”, 2”, 3”, and 4” airspaces
• Fast, simple, inexpensive installation
• Factory installation and supervision available
• RIM System successfully installed for over 45 years
• Natural Frequency constant over a wide load range

Installation of RIM System for a wood floated floor is similar to that of the isolated concrete slab. Starting with a level subfloor, a 3/8” thick strip of SRP (perimeter isolation board) is adhered to all non-isolated walls (the height of SRP is dictated by the height of the finished floor). The rolls of batting with secured pads are rolled out into place. If heavy point loads exist, individual KIP pads are then placed per submittal drawings. Typically, two layers of 3/4” plywood are laid (seams staggered) over the isolation pads, and the finished floor is installed according to the manufacturer’s instructions. While two layers of 3/4” plywood often proves suitable for most isolated concrete floor components, remember to consider three layers of plywood, glued and screwed together for added stiffness and may, which add in load capacity and noise control. The installation is completed by applying acoustic caulking to the top of the SRP board.

Installation of RIM System for a wood floated floor is similar to that of the isolated concrete slab. Starting with a level subfloor, a 3/8” thick strip of SRP (perimeter isolation board) is adhered to all non-isolated walls (the height of SRP is dictated by the height of the finished floor). The rolls of batting with secured pads are rolled out into place. If heavy point loads exist, individual KIP pads are then placed per submittal drawings. Typically, two layers of 3/4” plywood are laid (seams staggered) over the isolation pads, and the finished floor is installed according to the manufacturer’s instructions. While two layers of 3/4” plywood often proves suitable for most isolated concrete floor components, remember to consider three layers of plywood, glued and screwed together for added stiffness and may, which add in load capacity and noise control. The installation is completed by applying acoustic caulking to the top of the SRP board.

Installation of RIM System for a wood floated floor is similar to that of the isolated concrete slab. Starting with a level subfloor, a 3/8” thick strip of SRP (perimeter isolation board) is adhered to all non-isolated walls (the height of SRP is dictated by the height of the finished floor). The rolls of batting with secured pads are rolled out into place. If heavy point loads exist, individual KIP pads are then placed per submittal drawings. Typically, two layers of 3/4” plywood are laid (seams staggered) over the isolation pads, and the finished floor is installed according to the manufacturer’s instructions. While two layers of 3/4” plywood often proves suitable for most isolated concrete floor components, remember to consider three layers of plywood, glued and screwed together for added stiffness and may, which add in load capacity and noise control. The installation is completed by applying acoustic caulking to the top of the SRP board.
## Acoustical Tests

<table>
<thead>
<tr>
<th>Material Description</th>
<th>STC</th>
<th>IIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>6” Concrete Slab</td>
<td>53</td>
<td>27</td>
</tr>
<tr>
<td>3/8” Plywood, 2 Layers 3/4” Plywood</td>
<td>66</td>
<td>63</td>
</tr>
<tr>
<td><strong>KINETICS RIM I-2-16</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6” Concrete Slab</td>
<td>72</td>
<td>62</td>
</tr>
<tr>
<td><strong>KINETICS KIP 22Q2 Isolation Pads</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6” Concrete Slab</td>
<td>94</td>
<td>82</td>
</tr>
<tr>
<td><strong>KINETICS RIM-Q-2-16</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6” Concrete Slab</td>
<td>73</td>
<td>70</td>
</tr>
<tr>
<td><strong>KINETICS RIM L-2-12</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3” Lightweight Concrete (polished), 1/2” Plywood</td>
<td>52</td>
<td>54</td>
</tr>
<tr>
<td><strong>KINETICS RIM L-2-16</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1” Oak Hardwood Floor, 3” Subfloor</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td><strong>LOFT</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/4” Oak Hardwood Floor, 3/4” Sleepers, 1-1/2” Gypcrete,</td>
<td>50</td>
<td>45</td>
</tr>
<tr>
<td>2 Layers 1/2” OSB</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>KINETICS RIM L-1-16</strong></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Acoustical Tests

3” Subfloor
1” 2 Layers 1/2” OSB
1-1/2” Gypcrete
3/4” Sleepers
3/4” Oak Hardwood Floor

3” Subfloor
1” Oak Hardwood Floor

No Ceiling
3-1/2” Wood Deck Subfloor
1/2” Plywood

Precast Concrete 14” Tee
2” Topping Slab
4” Concrete Slab
2 Layers 5/8” Gypsum Board
3-1/2” Fiberglass Insulation
Cold Rolled Channel (CRC)
6” Concrete Slab

KINETICS
1/2” Plywood
4” Concrete Slab
6” Concrete Slab

KINETICS

RIM I-2-16
RIM L-2-12
ICC Isolation Hanger
RIM-Q-2-16
KIP 22Q2 Isolation Pads

Call us to discuss your requirements for noise control, and learn how to employ the versatile, proven RIM System to

Our Noteworthy Projects

Thousands of KINETICS® RIM systems have been installed successfully under mechanical equipment rooms, gym-

nasium floors, rooftops, seaports, and fitness centers, theater and cinema venues, recording and broadcasting studios,

private residences, loading docks, gun ranges, and bowling centers around the world. Below, we’ve listed just a few of

our noteworthy projects.

1. University of Illinois Recreation Center
2. Boston University Arena Mechanical Room
3. RN & Marine Barracks Music Rooms
4. Florida State University Communications Studios
5. Cincinnati State Audio Studio and Control Room
6. CNN Studios
7. WWF Entertainment Studios
8. ESPN Studios
9. University of Akron Student Union Ballroom
10. Nelson Basketball Hall of Fame Office and Pro-

tection Room
11. Hidding College Gun Range
12. Ramsey County Law Center Gun Range
13. National Underground Railroad Freedom Center
14. Mechanical Rooms
15. Soldier Field-Chicago Bears Stadium Renovation
16. Elder Shirt Lofts Condominiums

FLOOR THEORY

Floor isolation systems are incorporated into building floors in order to isolate airborne and impact sound transmis-

sions. A "floated" floor (or rooftop) is sup-

ported by resilient mounts installed in the structural floor or rooftop. The design of an effective isolation system is

dependent on several factors including:

1. Stiffness and mass of the structural floor
2. Isolation mount natural frequency and damping characteristics
3. Airspace height and venting
4. Resilient pads of the floated floor
5. Sound absorption of the floated floor

Creating airspace between the structural and isolated floors while decoupling the two floors with the appropriate resilient mount effectively controls noise transmission. Maximum effectiveness of floating floor composite construction is achieved when the floated floor is fully isolated from the building structure and non-structural components, such as ductwork and piping. Accordingly, airborne and impact noise transmissions are greatly reduced between the room incorporating the floating floor system and other parts of the building. Additionally, floating floor systems are often used to prevent transmission of vibration and airborne noise from entering into the space in which the floating floor is installed.