RISER DESIGN INPUT GUIDE

There are many factors that impact the design of a Riser support system. Because many of these factors are not items that the Engineers at KNC can “guess” at and because they have significant cost/performance impact on the Riser support system being designed, it is critical that key input data be provided to Kinetics as early in the design process as possible.

As an aid to collecting the appropriate data, Kinetics Noise Control has developed a checklist (attached) to highlight the needed information. This instruction guide has been developed to go into a higher level of detail as to what information should be provided in the checklist, why it is needed and to indicate the ramifications of unknown or erroneous data.

General Data

The **Project name and Address** offer not only a link to tie the document to a particular project, but the address also allows Kinetics to locate the project on a map and estimate the seismic forces to which the system will be subjected. The 2 largest lateral loads that must be addressed in the design of a Riser are the seismic and lateral hydraulic thrust loads generated by unrestrained flex connectors. 90% of the time the Seismic load governs the size of the guides used to hold the pipe in alignment.

The **Date** provides us with a time line if we have multiple documents in the file so we can be assured of using the latest one.

The **Primary Structure Material** refers to the material from which the vertical elements (columns) or the building are constructed. The riser support system needs to absorb the difference in growth between the structure and the piping. Especially for taller buildings, the growth or shrinkage of the structure can be significant. This is impacted by the material used in the structure.

Sometimes a **Global Shrinkage Factor** may be given, especially with concrete construction. If the risers are installed before the concrete is fully cured or there is an anticipation that compressive loads in the structure will result in some vertical shrinkage this displacement may need to be addressed.

The **Ambient Temperature at Installation** addresses the **nominal** temperature of the structure when the Riser is being installed. This is the temperature assumed for the structure and riser initially and forms the baseline for all initial isolator adjustments.

If the capacity of the support structure or floor at the isolator/anchor locations is critical, it needs to be provided. If is identified on the checklist as the **Maximum permitted floor loading at any one location**. If not identified, it will be assumed to not be an issue but the output will include a listing of the projected loads. If it is later determined that this is an issue, the design will need to be altered and the analysis re-run.
Additional Data to be Included

Provide any drawings that show relevant Structural Data and Riser Layout Information or which offer overall conceptual information on the project. These drawings should also identify section changes, jogs, elevations between floors, branch line tie ins and ideally preferred locations for supports and guides.

If these drawings do not exist, or are incomplete, we still need the following geometrical items clearly identified for each individual riser run:

Overall Floor Elevations or Elevations between all adjacent floors. This is required so that KNC can determine possible locations for supports or guides and overall lengths of runs which in turn defines both the weight supported and the length over which and thermal variations act and drive the total growth or shrinkage in the supported system.

Starting and Ending Point of the Risers to be Analyzed. The type of end termination can significantly impact the design of the system. For instance, if the riser terminates into a tee that is physically restrained, it may not be permissible to allow the top of the riser to move either upward or downward. This would define the location for an anchor or force the addition of a flexible coupling. In some instances Risers may also be broken into segments with not all of the system included in the support system being designed by KNC. Breaks like this can occur at jogs, particularly if there is a significant pipe size reduction at the same time. Information on the treatment of branch lines should also be addressed. If KNC is responsible for the design of these interfaces, we need to know where they are, how big the lines are, etc.

Identify any and all jogs in the vertical Riser runs (including the amount of offset). These Jogs effectively break a single Riser into 2 separate adjoining Risers that need to be analyzed separately. For smaller offsets, the weight can be carried as part of the Riser support system, but KNC would need to know how long the offset is to determine the weight.

Identify changes in the Riser section (pipe size) and the elevations of those changes. Changes in section generate both changes in weight and introduce hydraulic forces that must be addressed.

In some cases, there may be preferential locations for supports and guides. These may result from field access issues, capacities of the support structure, installation coordination or simply customer preference. None of these would be things that KNC could address if they are not provided to us up front for reference.

In some systems Victaulic or other grooved type couplings may be used to join pipe segments. When this is done, if the appropriate type of coupling is used, the clearance in the coupling can sometimes replace the need for a separate expansion joint. This also means however, that the pipe becomes a “noodle” and can flex more easily requiring additional guides. If
the customer’s intent is to use this type of coupling, KNC will need to know specifics about the coupling models selected.

Riser Specific Data

Beyond the geometric data identified above, there are several items that need to be known about the individual Riser Pipe materials and operating conditions. These can be listed in the table at the bottom of the Checklist form and include:

The **Riser Name**, an identifier so that our output can be associated with customer documents.

The **Material Type/Schedule** which is needed to compute the expansion rates of the piping, the weight, area and allowable stress.

The **Connection type** qualifies how much force can be carried, transferred, from one pipe section to the next.

The **Operating Temperature** (there may be more than one, some systems may operate at one temperature in the summer and a completely different temperature in the winter). This governs the expansion and/or contraction of the pipe and the support system needs to be designed to accommodate all operating conditions.

Pressure at the top of the riser (for a steam system the pressure is constant throughout the system, for a fluid filled system, the pressure will be a function of the elevation.) Unless otherwise indicated to KNC, this pressure will be assumed to be as follows:
1) Open System – example: Cooling Tower: Water dumps into a pan at low pressure, we will assume 10 ft head.
2) Closed System – example: Hot Water Riser: Pressure at top of riser has 30 ft head.
3) Steam System – Pressure is per spec.
4) Drainage/Waste – Pressure at top of Riser is 0 ft head.
If other than these, KNC will need to be notified and if an analysis has been performed, it may need to be re-evaluated.

Insulation Thickness and Density will generate additional weight that the riser support system must support. Some systems may have no insulation, some may have a lot. If no thickness or density is provided, but KNC is told that insulation is present, we will assume and insulation type and thicknesses based on ASHRAE “standard practices”.

The **Type Code** provides KNC with input as to the type of a Riser support system the contractor is looking for. If not indicated to KNC, we will select an arrangement that in our opinion appears to be the most appropriate. Common types of systems listed by increasing cost are as follows:

1) Anchored, Guided system with no Isolators
(High floor loading, poor acoustic performance, good for large variations of length, moderate to high stresses in pipe and joints)

2) Anchored, Guided system with Isolators
 (Distributed floor loading, moderate to good acoustic performance, will not drop when fluid is added, large variations of length require more costly high deflection coils, minimized stresses in pipe and joints)

3) Full floating – non-restrained isolators and guides only
 (Will drop significantly when fluid is added resulting in possible interfacing issues, distributed floor loading, good acoustic performance, large variations of length require more costly high deflection coils, moderate stresses in pipe and joints)

4) Semi floating – combination of restrained and non-restrained isolators and guides.
 (Will not drop significantly when fluid is added, large variations of length require more costly high deflection coils, good acoustic performance, minimized stresses in pipe and joints)

Other

If KNC is to provide interfacing connections between horizontal runs of piping mating with the Riser which can accommodate the anticipated growth or shrinkage, it must be indicated to KNC that this is the case. Otherwise it will be expected that the installation contractor will address these issues through the use of long enough horizontal runs and/or expansion loops installed so that they can flex and tolerate the elevation changes.

System Changes

Because of the inter-relationship between the various factors in the design of Riser support systems, it is critical that if any changes made in the installed Riser versus that analyzed be reviewed and modeled before they are incorporated. KNC can take no responsibility for the negative impact of these modifications if we are not so informed and able to analyze and approve them ahead of time.
RISER CHECKLIST

GENERAL DATA:

<table>
<thead>
<tr>
<th>Project Name & Address:</th>
<th>Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Structure Material (for exp factor) (Conc, Steel, Ignore)</td>
<td></td>
</tr>
<tr>
<td>Nominal Ambient Temperature at Installation</td>
<td></td>
</tr>
<tr>
<td>Maximum permitted floor loading at any one location</td>
<td></td>
</tr>
<tr>
<td>(Note: If Seismic treatment is required, complete Seismic Checklist as well)</td>
<td></td>
</tr>
</tbody>
</table>

Optional Global Shrinkage Factor: | (for Concrete Structures Only)

ADDITIONAL DATA TO BE INCLUDED:

Structure Data and/or Riser Layout Drawings showing:
- Overall Floor Elevations or Elevations between adjacent Floors
- Starting Point and Ending Point of Risers to be analyzed
- Any and All Jogs in the Vertical Riser runs including the amount of Offset
- Changes in Riser Sections and Approx Locations
- Optional/Preferred locations of anchors/guides/expansion couplings
- Other:
 - If Victaulic type coupling used, Data for Specific Model

RISER SPECIFIC DATA:

<table>
<thead>
<tr>
<th>RISER NAME</th>
<th>MAT’L TYPE/ SCHEDULE</th>
<th>CONNECTION TYPE*</th>
<th>OPERATING TEMP</th>
<th>WORKING PRES (OPT, see instructions)</th>
<th>INSULATION THICKNESS & DENSITY</th>
<th>DESIGN TYPE CODE** (Optional)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*TYPICAL CONNECTION TYPES – Welded, Brazed, Screwed, Glued, Groove Type Coupling

** DESIGN TYPE CODES: (1) Anchored, Guided system with no Isolators, (2) Anchored, Guided system with Isolators, (3) Full floating – non-restrained isolators and guides only (Note: Not recommended for fluid filled systems as the addition of fluid weight will cause the system to drop, potentially damaging interfacing piping). (4) Semi floating – combination of restrained and non-restrained isolators and guides. (If anchored and anchor elevation is inflexible, indicate desired location of anchor)

I understand that KNC will be designing to the above parameters and that this and the included documents comprise the extent of their knowledge of this project. No Independent attempt will be made by KNC to verify the information and I take responsibility for its accuracy.

Signed __________________________ Date ____________

Riser Design Input Guide
PAGE 5 of 5

KINETICS™ RISER SUPPORT SYSTEMS

Dublin, Ohio, USA • Mississauga, Ontario, Canada

Member

Toll Free (USA Only): 800-959-1229
International: 614-889-0480
FAX 614-889-0540
World Wide Web: www.kineticsnoise.com
E-mail: sales@kineticsnoise.com

RISER-001
RELEASED ON: 8/13/2014